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J.  Phys. A: Math. Gen. 13 (1980) 3125-3140. Printed in Great Britain 

Time reversal symmetry in applications of point group 
theory 

G E Stedman and P H Butler 
Department of Physics, University of Canterbury, Christchurch 1, New Zealand 

Received 28 March 1980 

Abstract. The hermiticity and the time reversal behaviour of a tensor operator each impose 
restrictions on the reduced matrix elements of the operator. These restrictions are 
investigated for one-particle operators. The relationships between the irreducible 
components of an operator and those of its time reversal or Hermitian conjugate are 
clarified. Selection rules are determined for the non-vanishing of certain matrix elements 
using both time reversal symmetry and the conflicting symmetries method of Judd. This 
generalises and corrects previous analyses, which themselves have had useful applications in 
solid state physics. 

1. Introduction 

Invariance of the Hamiltonian under time reversal gives rise to important constraints in 
the theory of condensed matter, in particular in the theory of substitutional impurity 
levels in crystals. If the impurity ion has an odd number of electrons, time reversal 
invariance results in degeneracies and cancellations which are associated with the 
names of Kramers and Van Vleck in ligand field theory and in ion-lattice relaxation 
theory. In the Jahn-Teller effect the symmetry types of participating lattice modes may 
be restricted to the symmetrised part of a Kronecker square. Such applications are 
discussed in Abragam and Bleaney (1970). Their formalism applies only to irreducible 
representations (irreps) which are real, and which contain a set of states closed under 
time reversal conjugation. Griffith (1961) gave a more general formulation, which 
unfortunately is not free from error. We offer a general solution to this long-standing 
problem: the effect of hermiticity and of time reversal invariance on the selection rules 
for, and reduced matrix elements of, irreducible tensor operators for all irreps of the 
point groups. Our notation is an adaptation of that used in the more abstract papers 
(Butler 1975, 1980, Stedman 1976) and that used in the solid state reference works 
familiar to workers in this field (e.g. Abragam and Bleaney 1970). We review in Q 2 
recent advances in point group theory from a solid state viewpoint. In Q 3 we derive the 
basic relationships between reduced matrix elements and give the consequent selection 
rules in 8 4. In Q 5 we investigate other restrictions on reduced matrix elements, 
including those arising from a standard choice of basis (e.g. reality of reduced matrix 
elements) and from Judd’s (1971) rule of conflicting symmetries. Another long- 
standing problem-the relationship between standard tensors and their Hermitian and 
time reversal conjugates in a group-subgroup basis- is examined. 

An alternative, though less developed, approach to such problems may be based on 
space-time groups, co-representation theory etc (e.g. Newmarch and Golding 1980). 

0305-4470/80/103125 + 16$01.50 @ 1980 The Institute of Physics 3125 
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Since point group theory is relatively familiar, and the generalisations necessary to 
include time reversal symmetries in a point group formalism straightforward, we have 
adopted the more conventional approach. 

In our account we have endeavoured to distinguish physics and algebra, convention 
and necessity, and specialisation and generalisation. As such, even the sections 
involving review of known material, e.g. for SO3, are more fundamental and complete 
than previous accounts. 

2. Basic theory 

2.1. Review of time reversal in O3 

The time reversal operator 8 is defined by 

e(X, t)e-' = (x, -t) 

together with the statement that 8 is antilinear. This results in both the classical 
momentum p = dx/dt and the quantum momentum operator p = -ihV being odd under 
time reversal. Antilinearity (Messiah 1965) has the consequence that 

(AIGIB) = (AIOIB)" (1) 
if IA) = 8jA) and d = 80K1.  Using the universal convention for the time reversal 
properties of spinors, 8a = p, 8p = -a, and the properties of spherical harmonics, one 
may show that (Judd and Runciman 1976) 

elajm) = ~ ( - ~ ) ~ - ~ l a j  - m).  (2) 

In this equation j and m are the angular momentum quantum number and its projection 
(abstractly, irrep labels for the pure rotation group SO3 (or R3) and SO2 respectively), a 
is a parentage label for an electronic state with these rotational quantum numbers, and E 

is a phase which is independent of m. In the usual (Condon and Shortley) spherical 
harmonic phase convention E = (-1)' where P is the sum of the parities (or orbital 
quantum numbers 1 )  of the contributing particles. In the convention used by Fano and 
Racah (1959) the spherical harmonics include an extra factor of i' and consequently 
E = 1. In either case 

e2/ajm) = (-1)2ilajm) (3) 

i.e. a state with integral (half-integral) spin is even (odd) under double time reversal. 
In § 4.1 and § 5.2 we give further results for O3 (namely, SO3 plus inversions) which 

are not all well known or well understood. In particular we clarify the relationship 
between the restrictions imposed by parity and by time reversal, concluding that the 
latter are more general than the former. 

2.2. Review for point groups 

Most of the results presented here in abbreviated form are from standard texts (e.g. Lax 
1974, Abragam and Bleaney 1970) and our earlier papers (Butler 1975, Butler and 
Wybourne 1976, Stedman 1975, 1976). 

The irrep A of the point group G ( G c  03) is said to be real if its character ,y*(g) 
(where g is an element of G) is real, and is said to be complex otherwise. For all groups, 
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the familiar 3j symbols of SO3 have analogues, called here the 3jm symbols, 

j 2  j 3 ) + ( ; 1  A Z  A 3 ) r  (il m2 m3 1 12 13 

describing the rth occurrence of the partner i A 4 1 T )  in the product IAlll)lAzlz).  Since 
each point group is ‘simple phase’, there is a unique phase factor {Al A z  A 3  r} ,  the 3j 
phase, describing the symmetry of the above 3jm symbol under the interchange of any 
two columns. In SO3 this phase has the value 

{jl j z  j 3 }  = ( - 1 ) ’ 1 + ’ ~ + ’ 3 ,  (4) 

This interchange symmetry governs whether the symmetric or antisymmetric part of the 
Kronecker product [A BA], (77 = +1 or -1 respectively) is of interest when two irreps 
are equal. If A I  = A 3  = A, A 2  = K ,  

( K * ) r  E [A @AI{hhrcr }*  ( 5 )  

Hence, from equation (4), j appears in the symmetric (antisymmetric) square of j ‘  if 
j + 2j‘ is even (odd), etc. The identity irrep 0 occurs just once in the product A BA * and 
the associated interchange phase {A} = {AA “0) will be called the 2j  phase. If A is real, {A} 
is obtained from character theory, being equal to the Frobenius-Schur invariant 
c,, =Cgxh(g2)/IGI. {A} is either +1 (in which case A is said to be orthogonal) or -1 (in 
which case A is said to be symplectic). If A is complex, {A} is unconstrained and cA = 0. 
The character of the symmetric and antisymmetric parts of a Kronecker square is given 
by 

( g )  = l[xA ( g 2 )  + 77 (x^ (gH21. ( 6 )  A [ A O A  I,, 

Hence the identity irrep appears once in [A BA]{A) if A is real, and in A BA*, but not 
A BA, if A is complex. 

In SO3, all irreps are real, and true irreps (whose basis functions have integral 
angular momentum) are orthogonal. Spin irreps (associated with half-integral angular 
momentum) are symplectic. A spin irrep is also called a double-valued projective irrep 
of SO3. Some authors conwrt to a double group SO; (in general, G+G*)  by 
distinguishing RzT (the rotati In by 27r) and the identity operation. For SO3, the 
eigenvalues of O 2  and RzV on any ket coincide, both having the value { j }  = (-1)”. Since, 
for group-subgroup branching within the physical rotation-inversion group O3 and its 
subgroups, true and spin irreps branch independently, we may associate a phase TA with 
any irrep A by the eigenvalue equation 

021PAl) = TA IPhl) (7) 
so that rA = +l(-1) for a true (spin) irrep. 

The above might suggest that we can equate TA and {A} for any irrep of any group. 
This is incorrect. If A is real and one-dimensional, {A} is constrained to be +l; if A is also 
a spin irrep, T~ = -{A}. This is the origin of an error by Griffith (1961). (A counterex- 
ample to his theorem 5 is afforded by the orthogonal (category 1, in Griffith’s terms) but 
spin irrep r.5 of the group Cf. r.5 is one-dimensional and the antisymmetric square 
vanishes; Griffith’s selection rule then forbids an interaction with a time-odd operator. 
However, a magnetic field will certainly split the r.5 basis states 1 j = ;, m = &.) If A is 
complex, {A} is unconstrained, and one may choose {A} = rA, provided that the basis 
functions, 3jm symbols, etc are defined in a consistent manner. However, this choice 
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has not been made for the complex spin irreps of SO2 (Wigner 1959) or its subgroups C, 
(Butler and Reid 1979). 

In the general case there is no essential connection between RZn, TA (defined as e'), 
and projective representations of a group. For example, the fundamental eight- 
dimensional spin (Le. projective) irrep of SO7 branches to the true irreps J = 0 , 3  of SO3 
(Wybourne 1970); all irreps of SO7 are orthogonal, and branch only to orthogonal 
irreps in such a case. As another example, recent efforts to observe sign reversal in a 
quantum system under R2.ir have shown that analogous sign reversals may occur in 
systems with integral angular momentum (Byrne 1978, Mehring et a1 1980), the 
spinorial character here being associated with the even dimensionality of the relevant 
basis function set rather than with the fermionic parentage of the states. While the 
conventional assignments of TA in point group irreps are very useful, they relate only to 
physical rotation-inversion operations acting on many-particle functions. 

The 2jm symbol is 

and may be regarded as an element U p  of a unitary matrix U which relates members of 
the basis functions of A to those of A * .  We choose bases so that there is a one-to-one 
correspondence between 1 and l* .  For example, in SO3 =, SO2 the component label m 
obeys m* = -m. The rotation matrices for the two sets of basis functions (for A and for 
A *) are complex conjugates up to this change of basis. Since 8 is antilinear, the same 
relation between rotation matrices holds for a basis vector and its time reversal 
conjugate. Indeed, apart from consideration of parentage, the 2jm transformation and 
the time reversal operation are related. In SO3, Butler (1980), who uses the Condon 
and Shortley phase, writes 8 as the product of three basis-dependent operators, the 
parity P (eigenvalue (- l)'), complex conjugation (of the c-numbers associated with any 

ket) K, and the 2jm transformation . The parity eigenvalue corresponds to E of 

equation ( 2 ) ,  and must be included either by distinguishing the action of 8 and of U, or 
by redefining the basis kets (in SO3 this gives rise to the Fano and Racah choice of 
spherical harmonics mentioned earlier). We retain the phase E explicitly. The action of 
8 is then given by equation ( 2 )  and the action of U is given by 

(3 

3. Effect of time reversal on point group theory 

3.1. Basis kets 

Consider a descent in symmetry O3 3 G; the ma erial to follow can be generalised 
straightforwardly to a further descent G=H,  etc. A basis ket IpAl) of G can be 
expanded in terms of a basis set of the same symmetry and of known parentage: 

(the basis transformation is independent of 1 by Schur's lemma). These may be 
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expressed in the jm basis as 

Using equation ( 2 )  and the antilinearity of 8, we have 

In these equations a corresponds to the branching multiplicity label: j + a). This 
label may be provided in part by the irrep labels of suitable covering groups G in the 
chain O3 2 6 2 G .  For example, if G=C3,  the covering groups G = O ,  D3 could be 
inserted. The relationship between the transformation coefficients for the branching 
j + ah and those for the conjugate branching j + a*A * is given in terms of 2jm symbols 
(Stedman 1976): 

The 2jm factor, a which will also be written in the row form ( j a h ) ,  is the ratio of 2jm 

symbols for the group O3 and subgroup G: 
i:l 

The S03-G 2jm factor ( @ A )  can, in turn, be written as a product of SO3-& and 6-G 
2jm factors. We may take all 2jm factors to be real (Butler 1980). 

In the context of this paper, the physical effect of the 2jm factor associated with 
complex conjugation is to perform the change in parentage labels, j and a, required by 
time reversal. For example, consider the counterexample of 0 2.2. The states I j = 4, 
m = Its) both belong to the irrep r6 of the group C3 (we use Bethe notation for irreps of 
point groups) and are time reversal conjugates. However these kets are not partners of 
the same irrep (r6 is one-dimensional), and a 2jm transformation in C3 is inadequate to 
connect these states; thus ( jah )  is a non-trivial transformation. Another way of 
showing this is to multiply the terms in equation (14) by their conjugates under 
ah + a*A *. The left side becomes { j } ,  which is equal to -1 since r6 is a spin irrep. The 
subgroup 2jm symbols become the 2j  phase {A} (using UU* = {A}I), which is equal to +1 
since r6 is real and one-dimensional (9  2.2). The remaining phase, 

then cannot be unity, and ( j a A )  is non-trivial. 
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In summary, time reversal of a basis ket amounts to a 2jm transformation of both 
irrep and branching multiplicity labels: 

with E = €(a, j ) ,  i.e. E is a function of the parentage of the ket. When a or A is complex, 
the space jaA is degenerate with ja*A* by Kramers’ theorem. The combined space 
corresponds to an irreducible co-representation of the space-time group generated by 
G and 8, and equally to an irreducible representation space of a covering group 6. 
Results valid within this space are given in § 4.3. 

We note that any transformation a + a* necessitated by time reversal may always be 
represented as a change in an irrep label of a covering group. In cases where no 
covering group chain can give a complete definition of the branching multiplicity label a 
(e.g. the SOS-0 2jm factor (?ars) ) ,  that part of the branching multiplicity label is real. 

In other physical applications, the complex conjugation of fractional parentage 
group labels can correspond to a quite different physical effect such as the particle-hole 
correspondence in shell theory. For example, the state related to d 3  by complex 
conjugation and thus by 2jm factors is a state of the d7 system. 

We note finally that even when all mixing effects, such as ligand interactions, are 
included, the j-values appearing in equation (10 )  will be integral or half-integral as the 
number of fermions in the system is even or odd, so that T~ = (- 1)” has the same value 
as T ~ .  (This may be seen explicitly either from the independence of branching of true 
and spin irreps, or from equation (22)) .  

3.2. Operators 

We now introduce an operator V acting on the basis kets lajahl) with the properties that 
V is Hermitian ( Vt = V), and has a definite signature under time reversal: = rvV; V 
is said to be time-reversal even (invariant) or odd according as T~ = f 1. 

Any operator may be expanded in terms of the irreducible components of a standard 
operator: 

The arguments denote the basis and multiplicity dependence of the definitions; 1, 2 
denote the bra, ket labels PIA 1, &Az respectively. The separation between c ;  and 0; is 
very much a matter of convention. One could choose for 0 ; ( 1 , 2 ,  r )  the unit tensor 
operators 

whose reduced matrix elements are all unity. We shall then write the expansion 
coefficients c ; ( l ,  2,  r )  as u ; ( l ,  2 ,  r) .  In general, the reduced matrix elements are not 
equal to unity (e.g. the angular momentum operator equivalents in SOS). In such a case 
we have (note there is no sum) 

(19 )  G ( 1 ,  2,  r )  = U ;  (1, 2 ,  r ) ( ~ l l ~ K l 1 2 ) n  c Z ( l , 2 ,  r )  = u ; ( l ,  2,  r)/(1110Kl12)r. 
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The constants c:(l,2, r )  may be expressed in terms of the matrix elements of V and 
the reduced matrix elements of Oi(1,2,  r ) ,  using the Wigner-Eckart theorem and the 
unitarity of the 3jm symbols: 

is independent of the convention used in separating operator and coefficient in equation 

= * V) and c -numbers such as c 2 and 
the matrix elements of Oi(1 ,  2, r )  are invariant. Together with equations (1) and (7), 
this gives the constraint on any non-zero matrix element 

(17). 
Under double time reversal, Q = V (since 

7.41 = 7.42. (22) 

We call this a superselection rule: only states with the same time-reversal character are 
connected by an operator of definite time-reversal symmetry. (See Gilmore and Park 
(1979) for reference to more fundamental discussions of such superselection rules.) 

Since, within the constraints discussed in P 2.2, double time reversal is equivalent to 
the group operator R2v, and since the 3jm symbol is invariant under any such group 
operation, we have 

T A ~ ~ K T A ~  = 1 (23) 

for any non-vanishing triple (A I K A Z ) .  Thus the product of any pair of spin irreps is a true 
representation etc (this could be argued more directly from the double covering 
property of a spin irrep). Combining these results, we conclude that 7, = 1, i.e. an 
operator of definite time-reversal signature may be expanded purely in terms of the true 
irreps. We note the similarity, but not the equivalence (cf 8 2.2), of the invariable 
equation (23) and the conventional rule 

{A I H K H A z )  = 1 (24) 

called quasiambivalence (Butler 1975), which is obeyed (given appropriate choices of 2 j  
phases {A}) by all point groups and all Lie groups. 

It may not be assumed that an irreducible tensor operator component is Hermitian, 
or that it has a definite time-reversal signature; both transformations are antilinear, and 
take a ket transforming as A of G into a ket or bra transforming as A*. The application 
of a 2jm transformation will render the transformed operator irreducible in the same 
basis. We define 

Note that the 2jm factors have been chosen differently in equations (25) and (26) so as 
to ensure that the last relation above has a simple form. 
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Using the Derome-Sharp lemma, one may prove readily that HE, T ;  and P i  are 
indeed irreducible and have reduced matrix elements related to those of 0; (1,2, r )  by 

Equations (28) and (29) are proved in the Appendix: equation (30) then follows from 
equation (27). E [  = €(ai, ji). 

In general, not all the phases in equations (28)-(30) will be trivial, and one cannot 
identify all of O;, H;,  T;,  P;, with unit tensor operators. In fact, either by inspecting 
equation (18) or by using equation (19) for each of these choices, with equations 
(28)-(3 0), we have 

Each of the operators in equations (25)-(27) may be employed as the basis operator in 
equation (17). We shall call the corresponding expansion coefficients h;(2, 1, r ) ,  
t;(l*, 2*, r )  and p;(2*, 1*, r )  respectively. Hermiticity ( V =  V') and time reversal 
symmetry ( v = T"V) give: 

(34) 

'(3 5 1 

(36) 

* 
t i ( l , 2 ,  r )  = Tv(;*)[c;:(l*, 2*, r ) ] * ,  

p;( l ,2 ,  r )  = 7fl;(2*, 1*, r ) .  

Using equations (21), (28)-(30), we obtain 

In the remainder of this paper, we explore the content of these fundamental relation- 
ships. 
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4. Selection rules 

4.1. Introductory examples 

As an example of the selection rules that we shall prove, consider the analysis of 
Abragam and Bleaney (1970), who used the hermiticity and time reversal properties of 
a basic matrix element to determine its symmetry: 

It follows that the rth occurrence of the operator irrep K in the Kronecker product 
A 0 A (A is the irrep for the ket) must be in the symmetrised or antisymmetrised product 
[A 0 A ]* as 7vrA = f 1, where T ~ ,  are the time reversal signatures of the operator and 
ket respectively. That is 

( K I T  E [A 0 A I l w h .  (41) 

If in these expressions a and A are both real, then the selection rule of equation (41) 
applies for all matrix elements of 0; in the manifold of states with quantum numbers 
(ajaA) (any such matrix element is then a linear combination of the matrix elements 

Now consider the application of this selection rule in the rotation group S 0 3 ( ~  = j ) .  
Will21). 

Using equations (3), (5) and (41), we have that 

T v (  - 1)’ = 1.  (42) 

Thus, time-reversal even (odd) operators must be expanded using only even (odd) 
j-values within a manifold of definite angular momentum. For example, a linear 
Zeeman interaction which must be expanded using the vector ( j  = 1) irrep has non- 
vanishing matrix elements within a manifold of definite angular momentum because it is 
time-reversal odd, while the linear Stark interaction which also transforms as j = 1 can 
produce no such matrix element because it is time-reversal even. Again, the operator 
equivalents of ligand field and spin Hamiltonian theory, being of the same degree in 
angular momentum operators as their rank, automatically have the correct time 
reversal properties for matrix elements within a manifold of given angular momentum 
(0 5.2). 

The usual proofs of this simple result are more circuitous (e.g. Merzbacher 1970, 
Sandars 1977), or invoke considerations such as parity or single-particle operators. 
Parity may be regarded as an auxiliary concept (see the comment of Dirac in Mehra 
(1973)), although implicit in the usual quantum theory of angular momentum (Pauli 
1939, Ross 1980). The application of Sandars (1977) is one in which parity considera- 
tions may not be used (the parity non-conservation associated with the weak interaction 
appears in the atomic Hamiltonian); nevertheless equation (42) remains valid. 

4.2. General 

A selection rule, of which the rule of Abragam and Bleaney (1970) is a specialisation, 
may be obtained from our earlier formalism. Consider the case that the ket irrep and 
parentage labels correspond to the time reversal conjugate of the bra, i.e. (a2jzazAz) = 
(al j laTA T) = (ajah), dropping the indices in the first set. (This will imply c1 = cZ.) As in 



3134 G E Stedman and P H Butler 

equation (15), the 2jm factors in equation (39) reduce to { j } { A } ,  and since { j }  = ri, 
equation (39) becomes 

T f l A { h K A r } =  1. (43) 

With equation ( 5 ) ,  this implies the selection rule of equation (41) for the matrix element 
(aj~*A*llO"llaj~A). This rule holds for off-diagonal (a*A* # ah)  as well as diagonal 
(a*A* = a h )  matrix elements. 

This does not exhaust the consequences of hermiticity and time reversal symmetry 
which are embodied in the equations of § 3.2. In the majority of cases, the phases in 
those equations can be simplified. If, for example, we may equate rA and {A}, and also 
set the 2jm factor ( j a A )  equal to unity, equations (29) and (39) become 

(a  1j1 a 1A 111 T" I ~ ~ z ~ z u z A  2 )  = E I E Z ( ~  l j l  a I A  T 110 "* I la2 j2a2A 2* ) r ,  

UC(1, 2, r ) = T ~ A l E 1 E 2 { A ~ K h z r } U ; ( 2 * ,  I*, r ) .  

(44) 

(45) 

The first arid second conditions are closely related, from equation (15)  and from the 
branching condition rj = rA. The conditions are both obeyed for all irreps of non- 
Abelian groups and for the true irreps of the cyclic groups (using Butler's (1980) 
conventions when applicable). They both necessarily fail for the orthogonal spin irreps 
of the cyclic groups (0 2.2), and also cannot hold in  the universal phase convention 
({A} = 1) for the complex spin irreps of the cyclic groups. Equations (44), (45) therefore 
apply to all cases excepting the spin irreps of the cyclic groups. 

Other cases which are sufficiently simple to be of interest in their own right are now 
summarised. If ket and bra irrep labels coincide, i.e. ( a l j l a l A l )  = ( a ~ j ~ a z h z ) ,  from 
equation (37), 

If we assume further that K is real, then K is orthogonal since it is also a true irrep 
(§ 3.2). One may choose a basis so that k* = k (e.g. tesseral, rather than spherical, 
harmonics). It follows that ui(1,  1, r )  is real or imaginary as { A I } { A T K A l r ) =  i 1 or (in 
the case that A l  is real) as 

(K*)r E [ A I  O A l l * { ~ l ) .  (47) 

This amounts to the condition that the corresponding operator U: (1, 1, r )  is Hermitian 
or anti-Hermitian (cf equation (3 1)). 

Finally, if in equation (38) a l ,  U Z ,  A I ,  A 2  are all real, and again we take K to be 
orthogonal and k = k* ,  uz( l ,2 ,  r )  is real or imaginary as E 1 E 2 r v  = f 1. For example, in 
ligand field theory where the parentages are similar (cl = E ~ )  and T~ = 1, the coefficients 
of symmetry-adapted tesseral harmonics are real. 

4.3. Kramers degenerate levels 

Consider matrix elements in a real, perhaps reducible, representation A made up of a 
minimal set of time reversal partners (i.e. irreducible co-representation, Wigner 
(1959)). aA=alAl if al  and A 1  are real, and U A = U ~ A ~ + U T A T  if either a l  or A 1  is 
complex. If the Hamiltonian is time-reversal even, the states laAl) in the represen- 
tation A will be degenerate. For coefficients c i ( j a A ,  ja  A, r )  within this representation 
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to be non-zero, we must have 

K *  E [A 0 Al.,,. (48) 
If ai  and A are real, the content of this equation is the same as that of equation (41). If 
either a l  or A i  is complex, equations (40) and (41) apply only to some of the matrix 
elements within the set A of degenerate levels (i.e. to the off-diagonal ones of the type 
nlhl+ U T A ? ) .  However, equation (48) holds for all matrix elements in this set, and is 
both useful (as in the case of determining Jahn-Teller active modes, Abragam and 
Bleaney (1970)) and simple. Equation (48) is of course weaker than equation (41) in 
the sense that the symmetrised product in equation (48) includes more irreps than the 
product in equation (41); in fact, from equation (6), for A 1  # A Y  

[A 0 A], = [hi 0 Ai] ,  + [ A ?  0 A TI, + A i  0 A T .  (49) 

For the case of the orthogonal one-dimensional real spin irreps of C,, [A 0 A]+ = 3r1 
and [ A @ A ] - = r l  which certainly do not give a selection rule. (However, these 
equations contain other information, e.g. the number of parameters describing an 
interaction of appropriate symmetry.) For the case of complex one-dimensional irreps 

1, 

[A 0 A]+ = r1+ A 3 + A 5 ,  [A o AI- = rl, 
where A s  = A I  0 A i  is a true one-dimensional irrep other than the identity. For the case 
of complex irreps of dimension greater than unity, i.e. r6 and r7 of T, 

[A o AI+ = rl + 3r4,  [A o AI- = rl + r4+r2+ r3. 
Thus, for example, a time-odd operator has no part transforming as rz or r3 within a 
Kramers manifold r60r7 in a symmetry G = T .  Butler (1980) also discusses some 
examples. 

5. Restrictions on basis operator matrix elements 

5.1. General 

The results of P 3, which were illustrated in § 4, suffice to cover all restrictions of 
physical interest arising from the hermiticity and time reversal symmetry of a physical 
operator. The key equations are summarised in basis-independent form (cf equation 
(21)) in equations (37)-(39). 

However, it is often the case that standard choices of basis operator 0:(1,2, r) are 
made. In practical problems it may be easier tc achieve results using the properties of 
the reduced matrix elements of such operators (e.g. Stedman 1979). In this section we 
generalise the discussion of such properties given by authors such as Wigner (1959), 
Brink and Satchler (1968) and Merzbacher (1970) for SO3. 

Another practical reason for this work is that the selection rules appropriate to a 
certain choice of operator may conflict with those appropriate to the physical pertur- 
bation V;  the combinations of time reversal and Hermitian conjugation properties 
might make a particular choice for 0:(1,2,  r )  inappropriate. For example, a spherical 
harmonic expansion may not be used to describe the Zeeman effect within a J manifold. 

Given a basis set of operators 0:(1,2, r) ,  its properties under Hermitian and time 
reversal conjugation may be inspected, and relationships between 0:(1,2, r ) ,  
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H:(l, 2, r ) ,  T;(1,2, r )  and PE(1,2, r )  may be derived. Upon insertion in equations 
(28)-(30), these give constraints on the reduced matrix elements of 0:(1,2, r ) .  In 
particular cases, as in 0 4.2, these may give rise to selection rules, or to conditions as to 
whether a reduced matrix element is real or imaginary. 

Equations (25) and (26) indicate that the relationship between 0:(1,2, r )  and each 
of H Z ( l , 2 ,  r )  and T i  (1,2, r )  depends on the 2jm symbol in the subgroup G, and thus 
on the convention used in constructing the basis of the irrep K of G. However, the 
relation between P:(1,2, r )  and 0:(1,2, r )  is not dependent on this convention. While 
a particular operator 0:(1,2, r )  does not transform into a multiple of itself under time 
reversal or Hermitian conjugation, it is customary to extend the definitions to call a 
tensor operator set O f ( l , 2 ,  r )  time-reversal even or odd according as P2(1,2,  r )  = 
* 0:(1,2, r ) .  

5.2. Application to SO3 

We illustrate this discussion in SOs. The spherical harmonic Y’,(O, 4 )  is a popular 
choice of operator; j is integral for an operator ( 5  3.2). This operator choice is 
independent of the state labels 1 ,2 .  Hermitian and time reversal conjugation reduce to 
complex conjugation: 

where E ,  = 1 in the Fano and Racah phase convention, and E,  = ( -  1)’ in the Condon and 
Shortley phase convention. Hence HI, = T’,,, = E l y ’ , , , ,  and P’,,, = YI,: the spherical 
harmonic operator set is time-reversal even. It follows from equation (29) that the 
reduced matrix elements of Y’,,, are real or imaginary as € 1 ~ ~ ~ 2  = * 1. 

Consider now states with integral angular momentum j l ,  j 2 .  We write ljlm,)+ 
Yht (e, 4) .  Inspection of the complex factors in the elementary integral Qlmll Y’,,, lj2m2) 

then shows that the reduced matrix element Q l ~ ~ Y ’ ~ ~ j 2 )  will be real or imaginary as 
E ~ E , E ~ (  - 1)J11-’+’2 = * 1. Combining these constraints, we have jl + j  + j 2  is even. This 
selection rule is normally attributed to parity considerations. We find that time reversal 
symmetry, which amounts here to complex conjugation, is sufficient to prove such rules. 

Equation (30) gives the further constraint 

0’111 Y’lljd = ( -  1)’1-f2+’G211 Y’lljl) (50) 

so that, for example, Q111 Y’lljl) # 0 iff j is even. In the example mentioned above, the 
Zeeman interaction has rank one, and all matrix elements of YL vanish in a J  multiplet; 
the Zeeman interaction cannot be written in terms of spherical harmonics. 

Another popular choice is that of the operator equivalents O’,,,(J), a set of 
polynomials in angular momentum operators transforming as Y’ under operations of 
SOs. As generally defined, these are diagonal in J ( j l  = j 2 ) ,  and are independent of the 
state labels. (The off -diagonal operator equivalents proposed by several authors are 
not independent of state labels and we shall not discuss them here.) 

Again, inspection gives the results HI, = ( -  l)‘TI, = E,O’,,,, and P’,,, = ( -  l)’OA, 
reflecting the odd character of angular momentum under time reversal. Proceeding as 
before, we find that the reduced matrix element QlllOf Iljl) is real or imaginary as E,  (- 1)’ 
is equal to f 1 respectively. Equation (30) is trivially satisfied, as is equation (42); the 
operator equivalents, unlike spherical harmonics, have the correct time-reversal pro- 
perties for describing all physical perturbations within a J manifold. For example, 
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within a manifold j = 1, the 2 j  + 1 = 3 states require 3 x 3 = 9 operators in the complete 
basis set. The operator equivalents O',(J) give 2; (2j + 1) = 9 operators, and thus may 
constitute a basis. However, all matrix elements of Yh vanish, leaving only six 
operators Yh. 

5.3. Group-subgroup operator construction 

Often, in practical applications, a standard (and perhaps unit) tensor of a group is used 
to generate a standard tensor of a subgroup by using the appropriate basis 
transformations. An obvious and practical problem is to ascertain to what extent 
previous results such as equations (37)-(39) are preserved under such a transformation. 

As a first example, consider a point-group symmetry adaptation of a unit tensor 
operator V i  ( j l ,  j 2 )  (equation (18)) for SO3. We define 

Equations (31)-(33) then become 

We summarise some consequences. From equation (54), Ot(j1, jz ;  j a )  is time-reversal 
even (odd) as j l  - j 2 + j  is even (odd). From equation (56),  (ajuAIlO"(j, j ,  j'u')llajuA), is 
real or imaginary as ( -  I)j'{A}{A *KAT} = f 1. In the case that all of a i ,  U Z ,  A I ,  A2,  K are 
real, equation (57) gives that (cu l j~alh l~~O"( j1 ,  j 2 ,  j u ) l l c u ~ j ~ a ~ A ~ ) ~  is real or imaginary as 
e1e2(jialAi)(jzuzAz) = f 1. From equation ( 5 8 ) ,  (cuju*A*llO"(j, j ,  j'a')llajuA), is non- 
zero if 

{ j j ' j } { A K h r }  = 1. (59)  

Similar restrictions, and in particular equation (59) in the appropriate special case, 
are found when a symmetry-adapted spherical harmonic or operator equivalent is used 
as basis operator, In all cases the Wigner-Eckart theorem with the Racah factorisation 
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lemma gives that 

It follows that the matrix element has the same complex conjugation properties, and 
selection rules, as the product of the S03-reduced matrix element (aljlllOiilazjz) and 
the 3jm factor appearing in equation (60). For example, equation (59)  amounts to the 
rule of conflicting symmetries (Judd 1971) for the case when two columns of the 3jm 
factor are identical: their permutation must be a symmetry operation. Equation (59),  
when applied to the G-reduced matrix element (aja*A *llO"( j ,  j ,  j'a')llajaA)r, is 
contained in equations (42)  (for the SO3-reduced matrix element) and (43),  from 
equation (4) .  In this case the rule of conflicting symmetries does not give new 
information. However, equation (59)  also applies to the reduced matrix elements 

(Ly'j'u'*K*llO^ ( j ' ,  j ;  ju)llajaA ) r ,  (aja *A * I I 0 * ( j ,  j' , ju ) / I  a ' j '  U ' K > r .  

For such matrix elements, equation (59)  becomes an additional selection rule, not 
covered by the time reversal or hermiticity considerations. 

The case of all three irreps being identical ( j '  = j ,  K = A in equation (59))  is covered 
by the analysis of earlier sections. 

6. Conclusions 

( 1 )  A critical review is given of known material in the field of time reversal 
arguments and point group theory. 

(2) The basic selection rules of equations (41) and (48)  which are already known are 
adequate for applications in which only the diagonal matrix elements of an operator are 
of interest. 

(3 )  Time reversal considerations also demand constraints on off-diagonal matrix 
elements, e.g. equation (41),  arid coefficients (9: 4.2). These are necessary for a 
complete discussion of symmetry restrictions on interactions between manifolds of 
differing energy, and even within a manifold if the corresponding representation is 
reducible. 

(4 )  If a standard choice (e.g. spherical harmonic, unit tensor operator) is made for 
an operator, further constraints may be found on the reduced matrix elements (9: 5). 
The effects of Hermitian conjugation and of time reversal have been found for the 
common case when irreducible tensors in a subgroup are constructed from standard 
operators in a covering group (9: 5.3). 

( 5 )  In SO3, time reversal is more fertile than parity as a source of selection rules and 
constraints (0 4.  i ,  8 5 . 2 ) .  

( 6 )  Time reversal is a physical operation related to complex conjugation in the 
Racah algebra. These operations give symmetries which overlap with those derived 
from the permutation symmetries of 3jm symbols. In particular, the selection rules 
resulting from time reversal symmetry overlap with, but are different from, those 
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derived from Judd's rule of conflicting symmetries. Judd's rule produces a selection 
rule not derivable from time reversal in the case of matrix elements in which one state 
and the operator have the same parentage and irrep character (§ 5.3). 

Appendix 

In the diagram notation of Stedman (1975, 1976), slightly extended so as to exhibit 
parentage labels and their transformation under time reversal, we write an operator 
matrix element in the form 

We mention some points of connection between the concepts in Stedman (1976) and 
the results of this paper. The stub (parity) transformation of the parentage line 
corresponds to the 2jm factor of equation (14). The Derome-Sharp lemma may be 

* 
Figure 1. Derivation of relationships between reduced matrix elements of Hermitian- and 
time-reversal-conjugate operators. H, T represent the corresponding conjugation rela- 
tion; WE and DS the Wigner-Eckart theorem and Derome-Sharp lemma. In simplifying 
the 2jm factors we have assumed the unitarity and reality of all 2jm symbols and also 
quasiambivalence (equation (24)). 
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generalised to group-subgroup branching vertices (equations (27) and (28) of Stedman 
(1976)), giving equation (13), and may be expressed in diagram jargon as the require- 
ment that the complex conjugate of any vertex is given by a ‘parity’ (e.g. 2jm) 
transformation to each leg. Apart from the various phases and state label changes, 
equations (37) and (38) are the requirements that the vertex representing U; be 
self-conjugate. Equations (15) and (24) may each be regarded as the consequence of a 
double application of the Derome-Sharp lemma to the corresponding vertex (basis 
transformation, 3 jm symbol). 

From this viewpoint, the proofs of equations (28) and (29) may be summarised as in 
figure 1. 
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